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Abstract 

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physics-
based, distributed, hydrologic, sediment, and constituent fate and 
transport model. GSSHA can simulate 2D overland flow, 1D stream flow, 
1D infiltration, 2D groundwater, and full coupling between groundwater, 
shallow soils, streams, and overland flow. GSSHA simulations can be very 
large and time consuming, simulating millions of grid cells over a period of 
years. In order to run these simulations in a reasonable amount of time, 
GSSHA must be parallelized to allow many processor systems to effectively 
run a single GSSHA simulation. Parallelizing GSSHA will enable shorter 
turnaround time, as well as the study of larger, more complex problems. 

This work attempts to fully parallelize GSSHA using MPI, with the 
ultimate goal of being able to efficiently run GSSHA on thousands of 
processor cores. We hope to maintain the previous GSSHA functionality 
by allowing users to run GSSHA without MPI and/or without PETSc. At 
this point in time we have parallelized and tested the GSSHA code for the 
overland routing, infiltration, groundwater, soil erosion, channel routing, 
and lakes processes as well as many other routines needed to run these 
simulations correctly. We have also parallelized the secant Levenberg-
Marquardt alternate run mode. For overland routing we have parallelized 
the ADE, ADE-PC, and explicit methods. For infiltration we have 
parallelized the Green and Ampt, Green and Ampt with Redistribution, 
Multi-layer Green and Ampt, and Richards methods. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

GSSHA (Gridded Surface Subsurface Hydrologic Analysis) is a physics-
based, distributed, hydrologic, sediment, and constituent fate and transport 
model. GSSHA can simulate 2D overland flow, 1D stream flow, 1D infiltra-
tion, 2D groundwater, and full coupling between groundwater, shallow 
soils, streams, and overland flow. This can allow GSSHA to simulate a wide 
variety of environments to analyze future conditions, management 
scenarios, flood control, sediment transport, and pollutant transport as well 
as many other types of problems. 

GSSHA simulations can be very large and time consuming, simulating 
millions of grid cells over a period of years. In order to run these simula-
tions in a reasonable amount of time, GSSHA must be parallelized to allow 
many processor systems to effectively run a single GSSHA simulation. 
Individual workstations often contain multi-core processors, while larger 
clusters or supercomputers can provide users with access to hundreds of 
thousands of processors. Parallelizing GSSHA will allow users to obtain 
results in a shorter amount of time, as well as study larger, more complex 
problems. 

GSSHA has previously been given some parallel functionality through 
parallelizing key components of the code using MPI or OpenMP. This work 
attempts to fully parallelize GSSHA using MPI, with the ultimate goal of 
being able to efficiently run GSSHA on thousands of processor cores. We 
hope to maintain the previous GSSHA functionality by allowing users to run 
GSSHA without MPI and/or without PETSc. At this point in time we have 
parallelized and tested the GSSHA code for the overland routing, infiltra-
tion, groundwater, soil erosion, channel routing, and lakes processes as well 
as many other routines needed to run these simulations correctly. We have 
also parallelized the secant Levenberg-Marquardt alternate run mode. For 
overland routing we have parallelized the ADE, ADE-PC, and explicit 
methods. For infiltration we have parallelized the Green and Ampt, Green 
and Ampt with Redistribution, Multi-layer Green and Ampt, and Richard’s 
methods. 
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Background 

Multiple software packages are used to efficiently parallelize GSSHA. MPI, 
DBuilder, and PETSc are used to develop the parallel version of GSSHA. 

MPI 

MPI (2012) (Message Passing Interface) is standardized and portable 
message passing system for parallelizing code on a wide variety of systems, 
in particular large distributed systems. MPI runs on supercomputers as 
well as desktop computers, allowing all GSSHA users to take advantage of 
the MPI parallelism provided they have MPI installed on their system. 
GSSHA is primarily parallelized with MPI or other software packages that 
use MPI. 

DBuilder 

The ERDC Information Technology Laboratory has developed a software 
package called DBuilder (Hunter and Cheng 2005; Campbell et al. 2010), 
which provides support for domain partitioning, parallel data management, 
and coupling coordination. DBuilder provides users with a simplified 
interface to MPI based parallelization routines. Taking advantage of 
DBuilder allows us to simplify the parallelization process. The domain 
partitioning code allows us to partition the 2D GSSHA domain, while the 
coupler code allows us to pass data between the partitioned 2D domain and 
the smaller 1D domain stored on each processor. 

PETSc 

The Portable, Extensible Toolkit for Scientific Computation (PETSc) 
(Balay et al. 1997; Balay et al. 2008; Balay 2012) provides users with 
access to a suite of data structures and routines for parallel scientific 
applications. These routines include a wide variety of fast, scalable linear 
solvers and preconditioners. The original GSSHA groundwater solver is a 
line successive over-relaxation solver, which is hard to parallelize well. The 
GSSHA groundwater routine is modified to use PETSc to solve the linear 
systems. Interfacing GSSHA with PETSc gives users access to many 
different state-of-the-art linear solvers and preconditioners that can be 
used to more quickly and more accurately solve linear systems. 
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General Parallelization 

GSSHA simulates a wide variety of processes, including both 2D and 1D 
domains. The 2D domains use a fixed grid where the grid cells can be 
divided among the processors, allowing each processor to operate on a 
subset of the overall 2D domain. The 1D domain is much smaller in 
comparison and does not parallelize as well as the 2D domain. Therefore 
the full 1D domain is simulated on each processor. A coupler is used to 
transfer data between the 1D and 2D domains. 

GSSHA uses 1-based indices, while DBuilder and most MPI routines use 
0-based indices. The MPI GSSHA code is written in mpi *.cpp files. 
Macros are written to properly pass the 1-based arrays to functions that 
require 0-based arrays, as well as to simplify the GSSHA code. Some MPI 
routines require careful changes to produce the correct results when using 
both 1-based and 0-based arrays in the same routine. 

Some GSSHA routines required significant changes to produce correct 
results efficiently on multiple processors. Some routines would loop over 
the 2D domain and modify neighboring grid cells instead of just modifying 
the current grid cell. Since the neighboring grid cells are sometimes stored 
on another processor, this required some routines to be rewritten to only 
modify the current grid cell. Other routines were written in ways that limit 
parallelism, such as using a LSOR (Line Successive Over Relaxation) linear 
solver rou tine that operates on each row of the 2D grid one at a time.  

These routines needed to be replaced, such as by replacing the LSOR 
routine with the PETSc linear solver. 

Most functions related to the MPI routines are called DBuild * or mpi *. 
These routines have #ifdef preprocessor directives around them to allow the 
code to be compiled with or without MPI. We use the GMPI flag for the MPI 
sections of code. Other parts of GSSHA are rewritten to work correctly when 
compiled serially or with MPI. While the parallelized GSSHA code is 
primarily tested and run on linux systems, the code is also designed to work 
correctly and tested on Windows systems. 

A primary data structure is created and added to the GSSHA main var 
struct containing all of the needed variables. This allows MPI DATA to be 
passed to each function that is parallelized or that calls a parallelized 
function. Define statements are used to create an empty MPI DATA 
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structure for non-MPI simulations. This data structure is primarily used in 
the MPI routines. Macros are developed to simplify GSSHA’s interaction 
with the MPI code. In most cases, the MPI DATA struct will be passed into 
many GSSHA routines and then the MPI routines will modify the variables 
inside this struct. 

1 typedef struct MPI_DATA { 
2 

3 // 2d domain struct 
4  DB_Subdomain vtxDomain2d; // 2-D data structure 
5 

6 // DBuilder types 
7  DB_Type intType;  // Integer data type 
8  DB_Type doubleType;  // Double data type 
9  DB_Type sedType3d;  // 3d sediment type 
10 

11  // MPI types 
12  MPI_Datatype sedMpiType3d; // 3d sediment MPI type 
13 

14  // Mesh information 
15  int ownedElements;  // Number of owned elements 
16  int ghostElements;  // Number of ghost elements 
17  int localElements;  // Total number of local 
18   // elements (owned + ghost) 
19  int globalElements;  // Number of global elements 
20 

21  // 1d domain struct 
22  DB_Subdomain vtxDomain1d; // 1-D data structure 
23 

24  // 1-D and 2-D Coupler 
25  DB_Coupler vtxCoupler;  // DBuilder coupler between 
26   // 1-D and 2-D domains 
27  // Alt Run Modes 
28  MPI_Comm GSSHA_COMM;  // MPI Communicator 
29  int mpi_group;  // MPI group number 
30 

31  // MPI I/O 
32  int mpi_binary_io;  // binary I/O flag 
33  MPI_Datatype mpi_file_double; // MPI double file 
34  MPI_Datatype mpi_file_int;  // MPI int file 
35 

36  // PETSc structs 
37  PETSC_DATA *petsc_data;  // PETSc solver struct 
38 

39 } MPI DATA; 

The primary MPI data structure also contains a PETSC DATA data 
structure for the petsc solver. This stores information related to the linear 
systems that must be solved. Since the structure of the mesh is constant 
throughout the simulation, we can create a PETSc matrix, vectors, and 
KSP solver at the beginning of the simulation, and then set double values 
of the matrix and vectors in the PETSc solver code. 

 



ERDC TR-13-8 5 

 

1 typedef struct PETSC_DATA { 
2 

3  int prev_global_rows;  // Number of rows of data for 
4   // prior processors 
5  int *petsc_map;  // Mapping from global number 
6   // to local number 
7  int *dia, *oia, *dja, *oja;  // Matrix structure arrays 
8   // for split matrix 
9  double *dval, *oval;  // Matrix value arrays for 
10   // split matrix 
11  Mat A;  // Matrix for linear solver 
12  KSP ksp;  // Linear solver data structure 
13  Vec x, b;  // Solution and rhs vectors for 
14   // linear solver 
15  int maxdj, maxoj;  // Max number of elements in a 
16   // diagonal and off-diagonal 
17 } PETSC_DATA; 
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2 2D Domain Decomposition 

The 2D domain is partitioned using DBuilder, which calls ParMETIS 
(Karypis 2012; Karypis and Schloegel 2011) to partition the 2D domain. An 
equal portion of the 2D mask containing the 2D map of which grid cells 
are being used during the simulation is read on each processor. By reading 
an equal number of rows on each processor instead of the entire mask, we 
reduce the memory requirements and reduce the amount of time spent in 
I/O. This mask is used to create a list of neighbors for each grid cell, which 
is used by DBuilder to partition the grid. We also compute the values for 
the abovecon, leftcon, rightcon, belowcon, maskrow, and maskcol arrays 
using this 2D mask and add them to a user information array. The 
DBuilder partition routine then passes the data for the user information 
array to the processor that locally owns the data after the partition. 

DBuilder returns a data structure containing the partitioned domain, 
including a list of all grid cells owned by each processor. We also store a 
layer of ghost cells bordering the 2D grid on each processor. This allows us 
to store a copy of data stored on other processors that is needed to 
complete computations for data stored on the current processor. We can 
complete computations that require data from neighboring grid cells while 
minimizing the time spent passing data between processors. 

Once the domain has been partitioned, we delete the 2D mask array in 
order to greatly reduce the amount of memory used by GSSHA in compari-
son to storing the full 2D mask array on each processor. The mask array is 
replaced with partioned maskrow and maskcol arrays that contain the 
global row and column for each grid cell. 

With the addition of the partitioned domain, we create the two new 
variables ONUM and LNUM in addition to GNUM to provide information 
about the number of grid cells used during the simulation. ONUM stores 
the number of owned grid cells and LNUM the sum of the owned grid cells 
and the ghost grid cells. ONUM replaces GNUM throughout GSSHA for 
loops over the entire 2D domain and for allocating arrays in some cases 
where the array is not involved with computations involving neighboring 
grid cells. LNUM replaces GNUM throughout GSSHA for allocating arrays 
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that are involved with computations involving neighboring grid cells and 
for some loops where each processor has the necessary information to 
modify the ghost cells without transferring data between each processor. 

Basic Examples 

Once we have created the partitioned domain, we can modify the GSSHA 
code to properly interact with the partitioned grid. There are a number of 
common communication patterns that are used throughout GSSHA that 
we will discuss below. 

We modify partitioned arrays by looping over the locally owned grid cells. 
If the array we are modifying is involved in computations using the current 
grid cell and a neighboring grid cell, then we must call a global update to 
make sure that the ghost values are accurate. 

1 for(i=1; i_ONUM; i++) 
2  array1[i] = coef*data[i]; 
3 DBuild_Global_dupdate(array1,mpi_data); 
4 

5 for(i=1; i_ONUM; i++) 
6  array2[i]=coef*(array1[i+1]-array1[i]); 
7 DBuild Global dupdate(array2,mpi data); 

Throughout GSSHA there are some values that are computed across the 
entire domain. Some of these values are running sums, while others are 
computed each time-step. Additionally maximum or minimum values are 
computed across the entire domain in some cases. Each of these situations 
requires some changes to the code. 

1 double sum_value=0.0; 
2 for(i=1; i_ONUM; i++) { 
3  sum_value += array[i]; 
4 } 
5 DBuild_Sum_Double(sum_value,mpi_data); 
6 main value += sum value; 

Error checking code must be changed to properly respond to errors when 
using multiple processors, especially when error checking inside loops over 
the 2D domain. The error message must be broadcast to all processors after 
the loop is completed so that all processors are aware that an error has 
occurred and can all have the same response. In some cases, instead of 
computing an error that causes the code to exit, an error tolerance will be 
computed that causes the time-step to be reduced or another action to take 
place to improve the accuracy of the code, requiring similar changes. 
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1 for(i=1; i_ONUM; i++) { 
2  if(isnan(array[i])!=0) { 
3  printf("Error message"); 
4  errptr.flag=4000; 
5  break; 
6  } 
7 } 
8 DBuild_Max_Int(errptr.flag); 
9 if(errptr.flag==4000) { 
10  main_err(&errptr); 
11  return; 
12 } 

Domain Coupling 

We create a coupler between the 2D domain and the streamcells for the 1D 
domain. The streamcells are 2D grid cells that contain 1D grid cells. The 
coupler creates a map from the 2D domain that is partitioned across all 
processors to a streamcell array that is stored on each processor. This array 
contains nstreamcells gridcells in indices 1 to nstreamcells; therefore, we do 
not need to use gst_gnum to determine the grid number and can instead set 
the grid number using the current loop iteration for the streamcells. For any 
routine with computations that use both the 1D and 2D domains, we create 
a streamcell array for any 2D array using the coupler at the beginning of the 
routine. These streamcell arrays interact with the 1D domain, which is 
stored on each processor. Once the 1D computations are complete, we then 
copy any modified streamcell arrays back to the 2D grid. 

1 // Get array of streamcells 
2 stream=(double*)malloc(nstreamcells+*sizeof(double)); 
3 DBuild_Coupler_dupdate_to_stream(stream,global, 
4   DB_D2TOD1,mpi_data); 
5 

6 // Modify array of streamcells 
7 for(sc=1; sc_nstreamcells; sc++) { 
8  for(frag=1; frag_ncellsingrid[sc]; frag++) { 
9 #ifdef GMPI 
10  grid=sc; 
11 #else 
12  grid=gst_gnum[sc][frag]; 
13 #endif 
14  stream[grid]+=gst_val*1d_val; 
15  array1d[node][link]=gst_val*val; 
16  } 
17 } 
18 

19 // Update original 2-D array using streamcells 
20 DBuilder_Coupler_dupdate_to_global(global, 
21   stream,mpi_data); 
22 

23 // Free streamcell array 
24 free(stream); 
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MPI Macros 

A number of macros have been added to simplify the interaction between 
GSSHA and DBuilder. This includes macros for updating ghost cells, 
converting between local and global indices, coupling the 1D and 2D 
domains, and computing a reduction on a variable stored on all processors. 
These arrays take into account that the GSSHA arrays are stored using 1-
based indexing and the DBuilder arrays are stored using 0-based indexing. 

Updating ghost cells 

DBuild_ Global dupdate/iupdate(array,mpi_data) 
Given an array partitioned across all processors, updates the ghost gridcells with 
values stored on other processors. 

DBuild_ Global dupdate 3d(array,type,mpi_data) 
Given a partitioned 3d array and DBuilder type, updates the ghost gridcells with 
values stored on other processors. 

Converting between local and global indices 

DBuild_Get_local_fnumber(global,local,mpi_data) 
Given the global gridcell index, returns the local gridcell index using 1-based 
indexing, returning -1 if the global index is not stored locally. 

DBuild_Get_global_fnumber(local,global,mpi_data) 
Given the local gridcell index, returns the global gridcell index using 1-based 
indexing. 

Coupling 1D and 2D domains 

DBuild_Coupler_dupdate/iupdate_to_stream(array1d, 
array2d, mpi_data) 
Updates the 1D stream array with values from the 2D global array. 

DBuild_Coupler_dupdate/iupdate_to_global(array2d, array1d, 
mpi_data) 
Updates the 2D global array with the values from the 1D stream array. 

DBuild_Coupler_dupdate_3d_to_stream(array1d, array2d, 
mpi_data) 
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Updates the three dimensional 1D stream array with values from the three-
dimensional 2D global array. 

DBuild_Coupler_dupdate_3d_to_global(array2d, array1d, 
mpi_data) 
Updates the three- dimensional 2D global array with the values from the three-
dimensional 1D stream array. 

MPI Allreduce across all processors 

DBuild_Sum_Double/Int(value,mpi_data) 
Computes the sum of the value across all processors. 

DBuild_Max_Double/Int(value,mpi_data) 
Computes the maximum value of a variable across all processors. 

3D Arrays 

In order to work with parallelized 3d arrays, we developed the DARRAY 
3D struct found in array 3d.h and array 3d.cpp. This struct allows us to 
more easily create and manipulate 3D arrays using MPI. The DARRAY 3D 
struct stores data in a 1D array, and contains variables to keep track of the 
size of the array (number of locally owned grid cells), the number of rows 
per grid cell, and the number of columns per grid cell. Accessor methods 
are provided to allow users to modify the values of 3D arrays. This routine 
was developed for the soil erosion routine. Below is the struct definition. 
There are examples of code using the 3D arrays in the soil erosion routine 
discussion below. 

1 typedef struct DARRAY_3D { 
2  DARRAY_3D(); 
3  DARRAY_3D(int size, int rows, int cols); 
4  ¬DARRAY_3D(); 
5  double& operator()(int i, int j, int k); 
6  double& index(int i, int j, int k); 
7 

8  // Local array information 
9  int size; 
10  int rows, cols; 
11  double *data; 
12 
13 } DARRAY 3D; 
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3 GSSHA Routine Parallelization 

Next we discuss some of the key routines that have been parallelized. In 
addition to these key routines, a large number of smaller routines have 
been parallelized throughout the GSSHA code. Most of these routines use 
parallelization techniques similar to the ones discussed throughout this 
report. 

Overland Flow Routing 

The overland flow routing ADE and ADE-PC route overland ADEPC 
routines and explicit method route_overland_adtv_wetlands routine are 
all parallelized. The ADE and ADE-PC methods required some minor 
modifications to be parallelized, while the explicit method required some 
more significant modifications. 

The ADE and ADE-PC methods modified the FLOWX, FLOWY, and 
update_h routines to compute only the locally owned grid cells and then 
update the ghost nodes after each loop. The code to compute the 
outcoordinate grid cell was modified to verify that the grid cell is on the 
current processor. MPI Allreduce routines are called to compute the sum 
or maximum value of certain variables across all processors. Below is an 
example of changes that were made. 

1 double route_overland_ADEPC(...) { 
2  while(time>1e-16) { 
3  FLOWY(h,qy,...); 
4  update_h(h,qy,...); 
5  ... 
6  } 
7 } 
8 

9 void FLOWY(h,qy,...) { 
10  for(i=1; i_ONUM; i++) 
11  qy[i]=qy[i]+val*(h[i+1]-h[i]); 
12  DBuild_Global_dupdate(qy,mpi_data); 
13 } 
14 

15 void update_h(h,qy,...) { 
16  for(i=1; i_ONUM; i++) { 
17  h[i]=h[i]+val(qy[i+1]-qy[i]); 
18  if(h[i]<val2) 
19  loopbreak=2; 
20  } 
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21  DBuild_Max_Int(loopbreak); 
22  DBuild_Global_dupdate(h,mpi_data); 
23 } 

The explicit method originally computes the dh values for the current 
gridcell and neighboring grid cell in the loops computing qx and qy. There 
is then a loop to use dh to update h. This is modified to compute only qx 
and qy in separate loops, and then to compute the new h values based on 
qx and qy, similar to the ADE and ADE-PC methods. Below is an example 
of the changes. 

1 // Compute qx 
2 for(j=1; j_ONUM; j++) 
3  qx[j]=qx[j]+newvalue; 
4 DBuild_Global_dupdate(qx,mpi_data); 
5 

6 // Compute qy 
7 ... 
8 

9 // Compute h 
10 for(j=1; j_ONUM; j++) { 
11  if(leftcon[j]!=0) 
12  qx2l = qx[leftcon[j]]; 
13  else 
14  qx2l = 0.0; 
15  if(abovecon[j]!=0) 
16  qy2a = qy[abovecon[j]]; 
17  else 
18  qy2a = 0.0; 
19  h[j] += (qx2l-qx[j]) + (qy2a-qy[j]); 
20 } 
21 DBuild Global dupdate(h,mpi data); 

Infiltration 

The Green and Ampt inf gna routine, Green and Ampt with Redistribution 
inf_redist routine, Multi-layer Green and Ampt inf_gna_multi routine, 
and Richards equation richards_solver routine are parallelized. Each 
routine required modifications to only compute the locally owned grid 
cells and then update the h array at the end of the methods, similar to the 
modifications for the overland flow routing routines. 

Groundwater 

The groundwater routine is modified to use a PETSc linear solver instead 
of the original LSOR linear solver for parallel GSSHA runs. The original 
LSOR solver is still used for serial runs. We also allow users to call the 
original LSOR solver while using MPI. However, using this routine with 
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MPI requires passing all data to processor 0, which solves the linear 
system and passes the results to the other processors. This results in much 
slower running times, so we only recommend using this for purposes such 
as testing the accuracy of the code in comparison to the serial version. 

The groundwater routine is primarily modified to compute the locally 
owned grid cells for a number of arrays and then update the ghost cells. 
Many sections of code are modified to compute the sum or maximum value 
of an array using MPI_Allreduce routines. The major changes are related to 
the introduction of the PETSc linear solver in the mpi_init_petsc_solver 
(called by the initialization section of the main_gssha_function) and 
mpi_petsc_solver (called by the groundwater function) routines. 

PETSc Linear Solver 

The LSOR linear solver computes the new values for each row or column 
of the 2D grid by generating and solving a tridiagonal matrix for each row 
or column, using the newly computed values from the previous row or 
column. This greatly limits parallelization due to only solving a single row 
or column at a time and containing a significant amount of code that is 
serial in nature. 

Instead, we can generate a linear system using any 2D partition and use 
PETSc to solve this linear system. We create a PETSc CSR matrix with split 
arrays, allowing us to create a matrix structure once during the initialization 
phase, and then to set the values of the matrix each time we solve the linear 
system. Each processor generates ONUM rows of the matrix. The split array 
structure requires that we create a CSR diagonal block array and a CSR off-
diagonal block array. The diagonal block array holds the data for the grid 
cells stored on the current processor, while the off-diagonal block holds the 
data for the grid cells stored on other processors. Once we have created a 
matrix and set the values of the matrix, we simply call the PETSc solver, 
which returns a solution vector. 

Adding PETSc functionality allows us to use any linear solvers and 
preconditioners provided by PETSc that are compatible with the split 
array matrix format, as well as any new linear solvers that are created in 
the future. 



ERDC TR-13-8 14 

 

Soil Erosion 

The soil erode routine required many minor changes related to modifying 
loops to only compute the values for grid cells stored on the locally owned 
grid cells and MPI Allreduce calls to sum or find the maximum value of a 
variable. However some major changes were needed to correctly parallelize 
the section of code for computing the sediment mass balance. The original 
routine was a single large loop computing the values for grid cells in the x-
direction and then the y-direction. Each iteration would modify values of 
the current grid cell and two neighboring grid cells. This results in problems 
when dividing the domain among many processors, as some computations 
modify values stored on other processors. 

To correctly parallelize this, we needed to divide the single loop into four 
separate loops, allowing us to modify only the values stored on the current 
processor, and to update the ghost nodes after computing values in the x- 
and y-directions. We first compute temporary values in order to ensure 
that all computations are not affected by previous iterations of the loop. 
We then update the values of the main arrays using these temporary 
arrays. We then call a global update to update the ghost nodes of the main 
3D arrays. Since each iteration of each loop modifies both the current grid 
cell and a neighboring grid cell, we loop over both the locally owned grid 
cells and the ghost grid cells. This ensures that all necessary computations 
are completed, although there are extra computations since we modify 
values in the grid cells which are overwritten when performing a global 
update. 

1 // Outline for sediment mass balance computations: 
2 Compute temp values for each grid cell in x-direction 
3 Compute locally owned grid cells 
4 Global update for vol_sed 
5 Compute temp values for each grid cell in y-direction 
6 Compute locally owned grid cells 
7 Global update for vol sed 

In order to more clearly see how the code is modified and how the 
DARRAY 3D class is used, below is a simplified code snippet from this 
routine. The xysedfract and xysed arrays are computed in the previous 
loop using sed fract and vol sed. This setup prevents the previously 
computed values in a loop from affecting the values computed later in the 
loop, ensuring that we obtain the same solution on any number of 
processors. 
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1 for(j=1; j_LNUM; j++) { 
2  for(k=1; k_NUMS; k++) { 
3  // Determine outgoing and receiving cells 
4  if(qxx[j]<0.0) { 
5  outgo=rightcon[j]; 
6  recvg=j; 
7  } else { 
8  outgo=j; 
9  recvg=rightcon[j]; 
10  } 
11 

12  // Update gridcells with previously computed values 
13  (*sed_fract)(outgo,k,2) = xysedfract[j][k]; 
14  (*vol_sed)(outgo,k,2) -= xysed[j][k]; 
15  (*vol_sed)(recvg,k,2) += xysed[j][k]; 
16 

17  // Zero out arrays index for next direction 
18  xysed[j][k]=0.0; 
19  xysedfract[j][k]=0.0; 
20  } 
21 } 

Channel Routing 

Parallelizing the channel routing process required modifying a number of 
routines including ex flow route, lateral inflow, and gw chan exchange. The 
1D channel routing domain is also generally fairly small in comparison to 
the 2D domain, so there are limited opportunities for speedups. Therefore 
we set up the 1D domain to be computed on each processor. This requires 
us to copy data from the partitioned 2D domain to every processor at the 
beginning and end of many of the 1D channel routing routines. 

Each of these routines use a similar pattern as shown in the earlier section 
on coupling the 1D and 2D domains. The 2D array is copied to a streamcell 
array stored on each processor, which is then used for the 1D computations. 
If this array is modified during the course of the routine, these streamcell 
arrays are copied back to the 2D array. This process allows us to limit the 
amount of the 1D code we must modify, allowing us to more quickly 
parallelize the code and limit the number of changes we must make. 

Lakes 

The 1D lake calcs routine is parallelized similar to the 1D channel routing 
routine by keeping a full copy of the lake data on each processor. This 
routine loops over all of the lake cells on every processor and modifies the 
2D array grid cells stored on the local processor. Some values computed on 
each grid cell are broadcast to all processors to ensure that every processor 
ends up with the same lake values. 
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SLM Alternate Run Mode 

The secant Levenberg-Marquardt local search method is modified to run 
parallel GSSHA simulations, as well as to run multiple parallel GSSHA 
simulations at the same time. 

The GSSHA code must first be modified to work with linux. This requires 
converting the postGSSHA.bat script to a postGSSHA.sh script, as well as 
using slightly modified versions of otl2ssf.exe and tsproc compiled using 
linux. These modifications allow these routines to work with multiple sets 
of input and output files at once. When calling multiple instances of the 
main gssha routine with different input values, only one processor per 
instance will call postGSSHA.sh. 

Next we modify GSSHA so that we can run multiple different GSSHA 
simulations at once. The main GSSHA routine is modified to accept a MPI 
Communicator and a group number as input. The GSSHA code is modified 
to use this communicator when calling MPI functions, and appends the 
group number to any output files. Therefore if eight GSSHA simulations 
are run at once, then eight variations of each output file are produced. 

The ModelSensitivityMatrix loop to compute the Jacobian is modified to 
run multiple GSSHA simulations at once based on the number of Jacobian 
updates needed and the number of available processors. The code 
attempts to take advantage of all available processors for each iteration of 
the loop. If there are more Jacobian updates than processors, then there 
will be multiple sets of Jacobian updates using mostly one processor per 
run. If there are many more processors than Jacobian updates, then each 
run will use multiple processors. Each call to main gssha will result in a 
different set of output files. 

At the end of the ModelSensitivityMatrix loop, we update the solution 
array on all processors. Each processor computes some new values for this 
array, but at the end of this loop, we want every processor to have the 
same values for each variable. We loop over the solution array and 
determine which processor computed the new value for each array index 
and then broadcast this value to all processors. 

When other parts of the SLM code call main gssha to compute initial 
values, run models for new lambda values, etc, one group and all available 
processors are used. 
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4 Parallel I/O 

The original GSSHA code primarily read and wrote ascii files. In order to 
speed up the I/O code and allow the I/O to work correctly for large grids, 
we need to convert the input files to ascii, develop binary routines capable 
of quickly reading and partitioning the data, and then convert the output 
files from binary back to ascii. This requires the developing of pre- and 
post-processing routines as well as the MPI GFILE class that handles the 
parallel file I/O using MPI I/O. These I/O routines are added in addition 
to the original serial ascii routines. 

Pre- and Post-processing 

A pre-processing program called pre gssha is developed that must be run 
prior to the main GSSHA simulation. This routine reads the project file 
and picks out the input files that must be converted from ascii to binary. 
The GSSHA code to read the project file is adapted to a simpler version in 
the file pre post readprj.cpp. This code reads in each line from the project 
file, and extracts and saves the names of any input or output files. The pre-
gssha routine then calls a function to convert the file from ascii to binary. 
This routine first writes any header data to the top of the file. The routine 
then reads in each line of an input file and each line of the mask file, and 
then writes the grid cell values from the input file for each non-zero entry 
in the mask file to the binary file. This routine only needs to be run once 
after the input files are created or modified. 

A similar routine called post-gssha is used for post-processing. This 
routine also uses the pre post readprj.cpp file to process the project file 
and extract input and output file names. This routine then calls a function 
to conver the binary files to ascii files. This routine first converts the 
binary header information to ascii information, and then reads in each line 
of the binary output file and each line of the mask file. The routine then 
writes the zeros to the locations in the 2D grid for a zero entry in the mask 
file, and writes values from the binary files for each non-zero entry in the 
mask file. This routine must be run after every GSSHA simulation in order 
to convert the new output files from binary to ascii. 
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GSSHA MPI File Class 

The MPI GFILE class is designed to handle opening, reading, writing, and 
closing MPI files for GSSHA. New I/O routines have been written for the 
parallel MPI files in addition to the original ascii files. 

The MPI GFILE class contains the name of the original and binary files, 
the MPI File object, an offset used to track the writing location in the file, 
and a boolean value to determine if the file is open. 

1 typedef class MPI_GFILE { 
2 

3  char *filename;  // File name 
4  char *binfilename;  // Binary file name 
5 

6  MPI_File fptr;  // MPI_File object 
7 

8  int offset;  // Current read/write location 
9   // in MPI_File 
10  bool opened;  // True if file has been opened, 
11   // false if not 
12 } MPI GFILE; 

In the initialization code, the routine mpi init file types uses the 2D 
partition to create an MPI type used to read and write data from files. 
Separate routines are created for double and integer file types. 

1 // Create double mpi file type 
2 MPI_Type_create_indexed_block(mpi_data->ownedElements,1, 
3  mpi_data->vtxDomain2d.globalNumber, 
4  MPI_DOUBLE,&mpi_data->mpi_file_double); 
5 MPI_Type_commit(&mpi_data->mpi_file_double); 
6 

7 // Create int mpi file type 
8 MPI_Type_create_indexed_block(mpi_data->ownedElements,1, 
9  mpi_data->vtxDomain2d.globalNumber, 
10  MPI_INT,&mpi_data->mpi_file_int); 
11 MPI Type commit(&mpi data->mpi file int); 

Once these MPI types are created, we can read or write data from files by 
setting a view using this MPI type, and then write the data to the file. 
Below is an example based on the MPI GFILE code. 

1 // Writing header data to a file 
2 MPI_File_set_view(fptr,offset,MPI_DOUBLE,MPI_DOUBLE, 
3   "native",MPI_INFO_NULL); 
4 MPI_File_write_all(fptr,&val1,1,MPI_DOUBLE,&status); 
5 MPI_File_write_all(fptr,&val2,1,MPI_DOUBLE,&status); 
6 MPI_File_write_all(fptr,&val3,1,MPI_DOUBLE,&status); 
7 MPI_File_write_all(fptr,&val4,1,MPI_DOUBLE,&status); 
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8 offset+=sizeof(double)*4; 
9 

10 // Writing double array to a file 
11 MPI_File_set_view(fptr,offset,MPI_DOUBLE, 
12  mpi_data->mpi_file_double,"native",MPI_INFO_NULL); 
13 MPI_File_write_all(fptr,data,mpi_data->ownedElements, 
14   MPI_DOUBLE,&status); 

This allows the GSSHA code to call a few fairly simple functions to read and 
write data. Below is an example that opens a file, reads the header data to 
many variables, reads the file data to an array, and then closes the file. 

1 MPI_GFILE *mpi_fptr; 
2 mpi_fptr.open_read_file(filename,mpi_data); 
3 mpi_fptr.read_header(&val1,&val2,...,&valn,mpi_data); 
4 mpi_fptr.read_map_double(data,mpi_data); 
5 mpi fptr.close file(); 

Separate routines are written for each type of GSSHA file in order to make 
sure that the MPI version produces the same output as the original 
routines. 



ERDC TR-13-8 20 

 

5 Run Procedure 

Once a GSSHA project has been developed, there are a number of steps 
needed to run the MPI version. GSSHA users will first need to compile 
GSSHA using the compile all.sh script. This will compile the code for 
GSSHA, DBuilder, and ParMETIS and produce an executable called gssha. 
This compile script will also compile a program for the secant Levenberg-
Marquardt alternate run mode, the pre gssha program, and the post-gssha 
program. 

Once GSSHA is compiled, the pre gssha routine must be run to convert the 
input files into a binary format for MPI GSSHA. This command only needs 
to be run once for a set of input files, although if the input files are changed, 
you may need to rerun pre gssha. Next we run the GSSHA simulation using 
mpirun (or a similar mpi command) on multiple processors. Finally we run 
post gssha in order to convert the binary output files into ascii binary files. 

1 // In GSSHA code directory /home/user/GSSHA 
2 sh compile_all.sh 
3 

4 // In GSSHA project directory 
5 // /work/user/GSSHA_Projects/BasicGSSHA 
6 ./pre_gssha basic_ov.prj 
7 mpirun -np 4 ./gssha basic_ov.prj 
8 ./post gssha basic ov.prj 

For small, quick simulations, GSSHA user may be able to use a desktop 
system or an interactive session on a HPC (High Performance Computing) 
system. However for large, time-consuming simulations, GSSHA users will 
need to submit a job to a batch queue on a HPC system. This will allow 
users to submit a job that will run when there is space available on the 
HPC system. The queue system tends to start smaller, shorter runs more 
quickly, so users should take this into account when selecting the number 
of processors to use and the wall time for their run. 

1 #!/bin/sh 
2 #PBS -l ncpus=256 
3 #PBS -l walltime=12:00:00 
4 #PBS -q standard 
5 #PBS -A ACCOUNT 
6 #PBS -N gssha_256 
7 

8 cd /work/user/GSSHA_Projects/BasicGSSHA 
9 

10 mpirun -n 256 /home/user/GSSHA/gssha_mpi/gssha 
11  basic ov.prj > gssha 256 output.txt 
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6 Performance Results 

In order to demonstrate the performance of GSSHA, we run tests using the 
large New Orleans and Fort Stewart models. The New Orleans model 
contains about 4.5 million grid cells. The simulation runs for 1 hour with a 
0.01 second time-step size, simulating overland flow using the ADE 
method. Tests are run on Garnet, a Cray XE6, using from 16 to 4096 
processors. We show the computation time and total running time in 
Table 1, where the computation time is the time spent in the main time-
stepping loop without I/O, and total running time includes initialization 
time and I/O time. These results demonstrate that we can obtain 
significant speedups using up to about two thousand processors. 

Table 1. Run times for a 1 hour New Orleans 
simulation 

Processors Computation Time Total Time 

16 64638.29 64675.77 

512 2526.98 2566.40 

1024 1868.22 1913.16 

2048 1502.39 1555.89 

3072 1818.73 1881.07 

4096 2034.20 2108.93 

The Fort Stewart model contains about 45 million grid cells. The 
simulation runs for 48 hours with a 10 second time-step size, simulating 
overland flow using the ADE method. Tests are run on Garnet, a Cray XE6, 
using from 16 to 1024 processors. The results in Table 2 demonstrate that 
we can obtain significant speedups on at least 1024. 

Table 2. Run times for a 48 hour Fort Stewart 
simulation 

Processors Computation Time Total Time 

16 17282.72 19519.51 

256 1813.82 4026.44 

1024 523.35 2763.07 
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The exponential speedup plot in Figure 1 more clearly shows that we 
obtain near linear speedups on up to 512 to 1024 processors for these two 
models. However, the New Orleans model shows that as the overhead 
increases and amount of work per processor decreases, the running times 
start to increase on over 2048 processors. Larger datasets and more 
optimization will be necessary to obtain better speedups. 
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7 Conclusion 

This report discusses the implementation of MPI within GSSHA, using 
DBuilder to assist with the parallelization. The 2D domain is partitioned 
across all processors, while the 1D domain is computed on each processor, 
using a coupler to pass data between the 2D and 1D domains. The original 
LSOR groundwater linear solver is replaced with the PETSc linear solvers, 
providing access to a wide variety of state-of-the-art parallel linear solvers. 
The overland routing, infiltration, ground-water, soil erosion, channel 
routing, and lakes processes and the secant Levenberg-Marquardt 
alternate run mode are parallelized. Results demonstrate that we are 
capable of obtaining significant speedups on up to about two thousand 
processors, with potential for speedups on larger numbers of processors 
for larger problems. 

Figure 1. Exponential speedup plot for New Orleans and 
Fort Stewart Simulations. 

 

A significant amount of future work still remains in order to finish 
parallelizing GSSHA. A number of routines and input options still need to 
be parallelized, such as routines related to wetlands, snow, and many of 
the alternate run modes. More detailed testing will be needed to verify that 
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all input options and original GSSHA functionality work correctly in the 
parallel version. There are many opportunities to optimize the code for 
better performance, especially with the 1D routines, which currently run a 
copy of the 1D model on every processor. Many of the 2D routines also 
have opportunities for improvement since the primary focus up to this 
point has been to ensure that the code runs accurately in parallel. Further 
maintenence will also be needed to ensure that MPI GSSHA continues to 
produce accurate solutions as more new routines and code are introduced 
to GSSHA. 
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